摘要:成考有三種報考層次,其中報考了高起點的考生,都要考《數(shù)學》科目。數(shù)學題最考驗學生的邏輯思維能力,這就需要考生在平時多加練習。今天我們就先來看看2021年成人高考高起點數(shù)學考前復習資料12,希望能幫助到大家。
2021年成人高考高起點數(shù)學考前復習資料12
點擊查看更多>>成人高考高起點數(shù)學考前復習資料
函數(shù)值域及求法
函數(shù)的值域及其求法是近幾年高考考查的重點內(nèi)容之一.本節(jié)主要幫助考生靈活掌握求值域的各種方法,并會用函數(shù)的值域解決實際應用問題.
●難點磁場
(★★★★★)設m是實數(shù),記M={m|m>1},f(x)=log3(x2-4mx+4m2+m+ ).
(1)證明:當m∈M時,f(x)對所有實數(shù)都有意義;反之,若f(x)對所有實數(shù)x都有意義,則m∈M.
(2)當m∈M時,求函數(shù)f(x)的最小值.
(3)求證:對每個m∈M,函數(shù)f(x)的最小值都不小于1.
●案例探究
[例1]設計一幅宣傳畫,要求畫面面積為4840 cm2,畫面的寬與高的比為λ(λ<1),畫面的上、下各留8 cm的空白,左右各留5 cm空白,怎樣確定畫面的高與寬尺寸,才能使宣傳畫所用紙張面積最小?如果要求λ∈[ ],那么λ為何值時,能使宣傳畫所用紙張面積最小?
命題意圖:本題主要考查建立函數(shù)關系式和求函數(shù)最小值問題,同時考查運用所學知識解決實際問題的能力,屬★★★★★級題目.
知識依托:主要依據(jù)函數(shù)概念、奇偶性和最小值等基礎知識.
錯解分析:證明S(λ)在區(qū)間[ ]上的單調(diào)性容易出錯,其次不易把應用問題轉(zhuǎn)化為函數(shù)的最值問題來解決.
技巧與方法:本題屬于應用問題,關鍵是建立數(shù)學模型,并把問題轉(zhuǎn)化為函數(shù)的最值問題來解決.
解:設畫面高為x cm,寬為λx cm,則λx2=4840,設紙張面積為S cm2,則S=(x+16)(λx+10)=λx2+(16λ+10)x+160,將x= 代入上式得:S=5000+44 (8 + ),當8 = ,即λ= <1)時S取得最小值.此時高:x= =88 cm,寬:λx= ×88=55 cm.
如果λ∈[ ]可設 ≤λ1<λ2≤ ,則由S的表達式得:
又 ≥ ,故8- >0,
∴S(λ1)-S(λ2)<0,∴S(λ)在區(qū)間[ ]內(nèi)單調(diào)遞增.
從而對于λ∈[ ],當λ= 時,S(λ)取得最小值.
答:畫面高為88 cm,寬為55 cm時,所用紙張面積最小.如果要求λ∈[ ],當λ= 時,所用紙張面積最小.
[例2]已知函數(shù)f(x)= ,x∈[1,+∞ (1)當a= 時,求函數(shù)f(x)的最小值.
(2)若對任意x∈[1,+∞ ,f(x)>0恒成立,試求實數(shù)a的取值范圍.
命題意圖:本題主要考查函數(shù)的最小值以及單調(diào)性問題,著重于學生的綜合分析能力以及運算能力,屬★★★★級題目.
知識依托:本題主要通過求f(x)的最值問題來求a的取值范圍,體現(xiàn)了轉(zhuǎn)化的思想與分類討論的思想.
錯解分析:考生不易考慮把求a的取值范圍的問題轉(zhuǎn)化為函數(shù)的最值問題來解決.
技巧與方法:解法一運用轉(zhuǎn)化思想把f(x)>0轉(zhuǎn)化為關于x的二次不等式;解法二運用分類討論思想解得.
(1)解:當a= 時,f(x)=x+ +2
∵f(x)在區(qū)間[1,+∞ 上為增函數(shù),
∴f(x)在區(qū)間[1,+∞ 上的最小值為f(1)= .
(2)解法一:在區(qū)間[1,+∞ 上,f(x)= >0恒成立 x2+2x+a>0恒成立.
設y=x2+2x+a,x∈[1,+∞ ∵y=x2+2x+a=(x+1)2+a-1遞增,
∴當x=1時,ymin=3+a,當且僅當ymin=3+a>0時,函數(shù)f(x)>0恒成立,故a>-3.
解法二:f(x)=x+ +2,x∈[1,+∞ 當a≥0時,函數(shù)f(x)的值恒為正;
當a<0時,函數(shù)f(x)遞增,故當x=1時,f(x)min=3+a,
當且僅當f(x)min=3+a>0時,函數(shù)f(x)>0恒成立,故a>-3.
●錦囊妙計
本難點所涉及的問題及解決的方法主要有:
(1)求函數(shù)的值域
此類問題主要利用求函數(shù)值域的常用方法:配方法、分離變量法、單調(diào)性法、圖象法、換元法、不等式法等.無論用什么方法求函數(shù)的值域,都必須考慮函數(shù)的定義域.
(2)函數(shù)的綜合性題目
此類問題主要考查函數(shù)值域、單調(diào)性、奇偶性、反函數(shù)等一些基本知識相結合的題目.
此類問題要求考生具備較高的數(shù)學思維能力和綜合分析能力以及較強的運算能力.在今后的命題趨勢中綜合性題型仍會成為熱點和重點,并可以逐漸加強.
(3)運用函數(shù)的值域解決實際問題
此類問題關鍵是把實際問題轉(zhuǎn)化為函數(shù)問題,從而利用所學知識去解決.此類題要求考生具有較強的分析能力和數(shù)學建模能力.
相關閱讀: